Honing Scanned Probe Lithography for Atomic-Fidelity Patterning

Scott W. Schmucker

Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana, Illinois USA

sschmuc2@illinois.edu

Agenda

- Background
 - Scanning Tunneling Microscopy
 - Electron Stimulated Desorption Patterning
 - Classical Sputter Sharpening
- Field-Directed Sputter Sharpening
 - Applied to Platinum Iridium Alloy
 - Applied to Amorphous Hafnium Diboride
- Electron Stimulated Desorption Patterning
 - Comparing FDSS to Classical Techniques
- Towards Atomic-Fidelity Patterning
 - Atomic-Scale Nanoboxes
 - Lithographic Features with 4-Atom Pitch
 - Large Two-Dimensional Patterns

Background and Motivation - Scanning Tunneling Microscopy

Scanning Tunneling Microscopy

$$D \approx 0.7 \sqrt{\frac{R}{\kappa}}$$

Scanning Tunneling Microscopy Probes

- Confinement of electron tunneling current
- Reduction of tip-induced broadening

Point Field Emission Sources

- Electron Microscopy
- Field-Emitter Arrays / Plasma Displays

Field-Ionization Point Sources

- Focused Ion Beam Etching

Background and Motivation - Electron Stimulated Desorption

2nA, 2x10⁻³ C/cm Voltages: 4V, 4.5V, 5V, 5.5V, 6V, 6.5V

An Appreciation of Scale

¹LaVan, D., et al, Nat. Rev. Drug Discovery **1**, 77-84 (2002) ²Kubby, J.A., Siegel, B.M., J. Vac Sci Technol. B **4**, 1 (1986) ³Eigler, D.M., Schweizer, E.K., Nature **344**, 524-526 (1990)

MNTL Nanoelectronics and Nanophotonics Seminar – March 29th 20104Willard Wigan Collection, http://www.willard-wigan.com/

Background - Classical Sputter Erosion

Field-Directed Sputter Sharpening

- Unfocused Ion Beam Bombardment ٠
- **Conventional Sputter Sharpening** ٠
- Field-Directed Sputter Sharpening •

800V/1800V V_r = 0.444

Field-Directed Sputter Sharpening: Platinum-Iridium

Field-Directed Sputter Sharpening: Hafnium Diboride

1200eV Ar+, 200V, Hadiyiunys Dibioned Eungsten

Field-Directed versus Classical Sputter Sharpening

Electron Stimulated Desorption Patterning

Electron Stimulated Desorption Patterning

Electron Stimulated Desorption Patterning

4.5 V Patterns	Etched	FDSS	Control
Mean Width (nm)	2.8	2.2	3.1
Std. Dev. (nm)	0.6	0.4	0.9

5.5 V Patterns	Etched	FDSS	Control
Mean Width (nm)	7.9	5.8	7.3
Std. Dev. (nm)	2.7	1.1	1.1

Welch's T-Test	4.5 V Patterns	5.5 V Patterns
Etched/FDSS	p = 0.10	p = 0.10
Etched/Control	p = 0.50	p = 0.65
FDSS/Control	p = 0.06	p = 0.01

Atomically Precise Patterning of Si(100) 2x1:H Surface

Patterning Abilities

Under optimized conditions, we demonstrate atomic-scale fidelity patterning

Nanobox patterning

We demonstrate our ability to produce nanoscale boxes of near-atomic precision in hydrogen resist.

Patterning conditions:

4 V, 2 nA, 2x10-3 C/cm

Imaging conditions:

-2 V, 50 pA

Randall, J., et al., J. Vac. Sci. Technol. B, **27** (6) 2764-2768 (2009)

High-Fidelity Nanolithography

Patterning: 4 V, 2 nA, 2x10⁻³ C/cm Imaging: -2 V, 50 pA

4 nm

Conclusions

- Field-Directed Sputter Sharpening (FDSS) produces sharp conductive probes on the nanometer and sub-nanometer scale.
- Treatment by FDSS produces a clear improvement in lithographic line width under electron-stimulated desorption patterning.
- Under optimized conditions, FDSS enables reliable and reproducible atomic-scale patterning fidelity, approaching the digital lithographic limit.
- A localized reduction in ion flux results from probe biasing, which may explain the success of FDSS.

Acknowledgements

Professor Joe Lyding and the Lyding STM Group http://stmgroup.beckman.illinois.edu/

Imaging Technology Group http://www.itg.illinois.edu/ Scott Robinson Cate Wallace

Dr. Navneet Kumar Professor John Abelson

Scott Daly Professor Gregory Girolami

Funding Office of Naval Research NSF Fellowship, NDSEG Fellowship

