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Scientists have long studied the physics of highly disordered conducting systems, seeking to understand the
multitude of quantum phenomena that govern how electrons move through material systems. Recently, research
into silicon-based quantum computing has made disordered conducting systems, such as Si:P monolayers
embedded in isotopically pure Si, technically relevant. Consequently, applying and advancing the theoretical
frameworks developed to describe electron behavior in disordered systems is a necessary objective in this field
of research. This study investigates key components of dopant-based Si quantum computing devices: embedded
regions of highly doped delta layers (δ layers). We examine the transport behavior and the electron-electron
interaction (EEI) physics in embedded Si:P δ layers by means of self-consistent magnetotransport measurements.
Parameters associated with the electronic transport offer a meaningful quantitative characterization of δ-layer
quality and dopant diffusion. In addition, by examining EEI behaviors in a set of samples with embedded
Si:P δ layers produced with different PH3 exposure procedures prior to Si encapsulation, we show how details
of material synthesis affect the dimensionality of charge carrier interactions in embedded Si:P δ layers. The
relationship between δ-layer confinement and EEI screening lengths is established here. This understanding will
help validate important models used for device simulation and design and lead to improvements in the control of
electrostatic gating of and tunneling transport through Si:P single atom transistors.
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I. INTRODUCTION

Positioning phosphorus dopants on Si (100) surfaces with
atomistic control by means of scanning tunneling microscope
(STM) -based hydrogen lithography [1–4] is used to produce
atomic-scale devices [5] such as wires [6,7], quantum dots
[8,9], and single dopant transistors [10]. Furthermore, it is
a promising metrological tool to study the building blocks
of the Si-based Kane quantum computer [11–13] and the
ultimate scaling of conventional semiconductor devices [14].
Researchers have addressed the challenge of producing high-
quality epitaxially overgrown silicon to embed [15,16] and
electrically activate phosphorus dopants [17] to form deter-
ministically placed atomic-scale devices and metallic delta-
layer (δ-layer) regions, which serve as the electrical gates,
contacts, and interconnects. Control over this fabrication
process has been improved by the development of several
sample synthesis methods. For example, limiting the substrate
temperature during encapsulating overgrowth to 250 °C has
been shown to limit dopant diffusion and segregation of
the incorporated phosphorus [18,19]. Beginning the encap-
sulation overgrowth by growing a locking layer of several
monolayers of Si deposited at room temperature has been
shown to further reduce the movement of itinerant dopants
during Si overgrowth [20]. To this end, we have demonstrated,
in previous work, a method for the accurate measurement of
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phosphorus diffusion and segregation by means of a series
of nondestructive, temperature-dependent, magnetotransport
measurements. Analysis of measured sample magnetoresis-
tivities at low temperatures reveals, with high resolution,
the thickness of the electron gas hosted by an ultrathin
embedded phosphorus δ layer in silicon [21]. This method,
which involves the careful analysis of the weak localization
signals in the magnetotransport data from measurements in
perpendicular and parallel magnetic fields, offers a sensi-
tive probe of δ-layer thickness that overcomes the resolu-
tion limitations of secondary ion mass spectroscopy (SIMS)
[22,23].

The promising advances in the synthesis of embedded Si:P
with good control of dopant placement and limited dopant
movement during Si encapsulation open the door for the de-
velopment of silicon-based single atom devices. However, in
order to engineer Si:P single atom devices with good control
of device behavior, researchers must understand the physics
of the component materials. The study presented here investi-
gates the nature of the conducting electrons in embedded high-
dopant-density Si:P δ layers in terms of interaction distances
and scattering geometries. We demonstrate an integrated ap-
proach to the measurement and analysis of electron-dephasing
and electron-electron effects in very-low-mobility, highly dis-
ordered embedded two-dimensional (2D) systems. By mag-
netotransport investigation, we obtain parameters associated
with quantum interference effects, measure the conducting
layer thickness, and determine contributions to the Drude
conductivity due to electron-electron interactions (EEIs)
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and related parameters by using the well-known theoretical
framework of Altshuler and Aronov [24]. We show how
these methods reveal important transport physics in highly
P-doped δ layers confined to nanometer-scale thicknesses
embedded in Si—a material system of major relevance to
Si-based quantum computing [5,12,13,25,26]. This approach
can also be applied to other disordered 2D conducting mate-
rials (above their metal-insulator transitions) in the regime of
diffusive transport, 2D localization, and 2D electron-electron
scattering.

Methods similar to those presented here have been
used by Kuntsevich et al. to study EEI in Si metal-
oxide-semiconductor field-effect transistor (MOSFET) two-
dimensional electron gases (2DEGs) in a magnetic field [27],
and by Minkov et al. to study EEI in low-mobility GaAs-based
2DEG systems [28], showing the promise of these methods in
measuring EEI effects in 2DEGs formed at insulator-insulator
interfaces (e.g., inversion layers and quantum wells). How-
ever, it has not yet been shown that this approach can be ap-
plied to quantitatively extract EEI parameters from transport
data for dimensionally confined, highly doped regions in an
insulator with mobilities several orders of magnitude lower.
We show that, at low temperatures—temperatures shown to
sustain state coherence in Si qubits [25,26]—these effects
can, indeed, be measured in well-confined, highly doped
Si:P δ layers with very low mobilities. Moreover, we show
that, at sufficient levels of dopant confinement, these systems
behave according to the theoretical framework for EEI in 2D
disordered conductors as described by Altshuler and Aronov
[24]. Embedded Si:P δ layers confined by a locking layer prior
to Si encapsulation exhibit a carrier density dependence of
derived charge screening lengths that agree within two stan-
dard deviations of uncertainty with expected values calculated
based on the Thomas-Fermi approximation to the Lindhard
theory, which describes the effects of electric field screening
by electrons in a solid [29,30]. Consequently, these embedded
Si:P systems may be understood to be 2D disordered metallic
systems with 2D EEI. Conversely, embedded Si:P layers not
well confined by a locking layer prior to Si overgrowth exhibit
signatures of three-dimensional (3D) disordered conducting
systems. The correspondence between synthesis and dimen-
sionality of electron transport behavior and EEI described
here improves the link between devices in the real world and
calculated electronic structures [31] and device simulations
[32].

II. METHODS

Sample synthesis followed the methods described previ-
ously by Deng et al. [33] and detailed in the Supplemental
Material [34] (also see [35–41]). Four samples were prepared
for this study to investigate the physical nature of charge con-
duction in embedded Si:P layers at different dopant densities
above the metal-insulator transition for P-doped Si:

A1. A sample with a maximally P-doped embedded Si:P
δ layer (approximately one-in-four Si replaced by a P atom)
produced by saturation dosing a pristine Si (100) surface with
PH3 prior to dopant incorporation, followed by the growth
of a 15-monolayer (ML) locking layer (LL) grown at room
temperature to limit dopant segregation during subsequent

processing, and encapsulation by Si overgrowth at 250 °C—
the locking layer saturation PH3 dose sample.

A2. A sample with a medium P-dopant density in the
embedded Si:P δ layer confined by a 15-ML locking layer
prior to Si encapsulation—the locking layer medium PH3 dose
sample.

A3. A sample with a low P-dopant density (close to the
metal-insulator transition for P-doped Si) in the embedded
Si:P δ-layer confined by a 15-ML locking layer prior to Si
encapsulation—the locking layer low PH3 dose sample.

B. A sample with a maximally P-doped embedded
Si:P δ layer with no locking layer deposited prior to Si
encapsulation—the no locking layer saturation PH3 dose
sample.

Analysis of the results of a secondary ion mass spectrome-
try (SIMS) measurement, following the methodology of Wang
et al. [42] and discussed in the Supplemental Material [34],
reveals approximate thicknesses of the conducting portions of
the embedded Si:P layers (Table I). These initial findings are
a promising indication that a locking layer confines P to the δ

layer. SIMS, however, remains somewhat limited as a means
of resolving the thickness of the δ layers in these Si:P samples,
[21] motivating us to use a magnetotransport-based method
for measuring the thickness of the embedded conducting layer
based on a careful analysis of the weak localization signal. We
apply a method that Mensz and Wheeler demonstrated has
subangstrom sensitivity in measurements of the conducting
layer thickness of Si inversion layers in a Si MOSFET, for
which they report a value of 0.21 ± 0.015 nm. [43] By
using a sensitive magnetotransport-based measurement for
conducting layer thickness, we are able to perform a self-
contained set of magnetotransport measurements that allow
us to directly compare the transport behavior of well-confined
embedded Si:P layers grown with a locking layer prior to
Si encapsulation (samples A1–A3) and Si:P layers poorly
confined due to lack of a locking layer prior to Si encapsu-
lation (sample B). With further analysis of these magneto-
transport results, electron-electron scattering parameters can
be extracted which give us further insights into dimensionality
and transport behavior in these materials.

Electrical measurements were performed on samples
etched into a Hall bar geometry with channel lengths of
100 μm and channel widths of 20 μm by using standard
lithographic techniques. Samples were affixed to the end of an
insert rod and loaded into a continuous closed-cycle cryostat
with a superconducting magnet (maximum field of 12 T).
With an approximately 1-μA rms ac current applied along
the channel and longitudinal and transverse (Hall) voltages
measured simultaneously by a lock-in amplifier technique,
magnetoresistance measurements were taken at temperatures
ranging from a base temperature of 2 K up to 16 K with
magnetic fields swept from −5 T to +5 T applied both per-
pendicular (B⊥) and parallel (B||) to the planes of the samples.
Temperatures were measured by a thermocouple positioned
near the sample.

III. RESULTS

We analyze the low-temperature magnetoresistivity data
with the magnetic field oriented perpendicular to and parallel
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TABLE I. Experimental results for Si:P δ-layer samples measured at base temperature (2 K). Two-dimensional carrier concentration n2D,
mobility μ, Fermi wavelength kF , and mean-free-path length l were extracted from Hall measurement analysis. Phase coherence length lφ
was extracted from fits to Eq. (1). Weak-localization-measured thickness � was extracted from fits to Eq. (2) and is comparable to the SIMS
measured thickness. Uncertainties in lφ and � are dominated by the fitting errors (uncertainties in the fundamental parameters effective charge
e, carrier mass m, and Fermi wavelength kF are not included). Uncertainties are given as one-sigma standard deviations. The fitting errors in
n2D, μ, kF , and l are less than 1% of the values.

SIMS-measured Si:P
Sample n2D(cm−2) μ(cm2 V−1 s−1) kF (nm−1) l (nm) lϕ (nm) � (nm) layer thickness (nm)

A1 1.87 × 1014 42.7 2.4 6.8 97 ± 0.2 1.7 ± 0.01 ≈7.2
A2 4.57 × 1013 47.2 1.2 3.7 41.4 ± 0.02 1.3 ± 0.02 ≈2.2
A3 8.47 × 1012 42.6 0.5 1.4 12.7 ± 0.03 1.7 ± 0.02 ≈2.5
B 1.99 × 1014 79.1 2.5 13 181 ± 0.7 8.8 ± 0.04 ≈15

to the samples at a range of temperatures based on semiclas-
sical transport theory to derive the values for the 2D carrier
concentration n2D, mobility μ, Fermi wavelength kF , and
the mean-free-path length l . The details of this analysis are
presented in the Supplemental Material [34] and in previous
work [21]. Parameters associated with electrical transport
extracted from measurements at base temperature are given
in Table I.

We carefully analyze the weak localization (WL) signal
δσWL—the contribution to the conductivity due to the quan-
tum interference of self-intersecting charge carrier scattering
paths. This effect leads to an increased probability of localiza-
tion (increased resistivity) when the phase coherence length
of the traveling mode is greater than the total length of the
scattering path. In 2D and at zero magnetic field, δσWL(B = 0)
is given by [44]

δσWL(B = 0) =
(

e2

2π2h̄

)
ln

(
τ

τφ

)
. (1)

With a 0 T � |B| � 1 T magnetic field applied perpendic-
ular to (B⊥) and parallel to (B‖) the sample plane of the
samples [Figs. 1(a)–1(d)], the change in conductivity relative
to δσWL(B = 0) for δσWL(B⊥) and δσWL(B‖) is given by the
following equations [45,46,21]:

δσWL(B⊥) − δσWL(0) =
(

e2

2π2h̄

)[
ψ

(
1

2
+ h̄

4eDτφB⊥

)

−ψ

(
1

2
+ h̄

4eDτB⊥

)
− ln

(
τ

τφ

)]
,

(2)

δσWL(B||) − δσWL(0) =
(

e2

2π2h̄

)
ln

(
1 +

√
4π

e2

h̄2

lc
l

l2
φ�2B||

)
.

(3)

Here, D = h̄2k2
F

2m2 τ is the diffusion coefficient, τφ is the
dephasing time, lφ = √

D τφ is the average phase coherence
length of the traveling modes, 
 is the digamma function,
lc = 1/

√
n2D is the correlation length (a measure of surface

roughness roughly equivalent to the mean donor spacing)
[31], and � is the mean thickness of the conducting layer.
The values of lφ and � for all four samples measured at
base temperature are given in Table I. Dividing the 2D carrier

concentration, n2D, by � gives a good measurement of the
3D carrier concentration, n3D, of the embedded Si:P layer. For
the Si:P layers of samples A1, A2, A3, and B, we report n3D

values at 2 K of 1.1 × 1021, 3.6 × 1020, 4.9 × 1019, and 2.3 ×
1020 cm−3, respectively. We calculate approximate Thouless
lengths, lTH ≈ √

l lφ , which represent the effective size scale
for quantum interference effects [44], of 26, 12, 4, and 49 nm
for Samples A1, A2, A3, and B, respectively. For all samples,
lTH > �, suggesting that these samples behave appropriately
according to weak localization theory for 2D systems.

We perform the weak localization measurement with the
magnetic field applied perpendicular to the sample at differ-
ent temperatures [Fig. 1(b)] and, fitting to Eq. (2), extract
lφ at several temperatures between 2 and 16 K, shown in
Fig. 1(c) on a log-log plot. Fitting this curve to the power-
law equation, shown in Fig. 1(c) with uncertainty given as
the one-sigma fitting error, offers insight into the electron-
electron scattering behavior in these conducting layers. lφ
with a T −1/2 temperature dependence is expected for phase-
decohering electron-electron scattering in a 2D disordered
conducting system. Alternatively, lφ with a T −3/4 temperature
dependence is expected to arise from large energy transfer
electron-electron scattering interactions typically observed in
3D disordered conducting systems. [24] We see that the
temperature dependence of lφ in both the saturation (A1) and
medium (A2) PH3 dose samples grown with a locking layer
is close to the T −1/2 temperature dependence expected in 2D
disordered conducting systems. Conversely, the temperature
dependence of lφ in the saturation PH3 dose sample grown
without a locking layer (B) is close to the T −3/4 temperature
dependence expected in 3D disordered conducting systems.
Unlike for the samples with the Si:P confined by a locking
layer prior to Si overgrowth (samples A1 and A2), the poor
confinement of the Si:P layer in sample B appears to cause
electron-electron scattering in this system to behave like a 3D
disordered conducting system. This suggests that the dimen-
sionality of the EEI may be different from the dimensionality
of the quantum interference effects (e.g., weak localization),
as observed for Sample B.

Corrections to the conductivity from EEI that do not in-
volve self-intersecting closed loops provide useful parameters
from which to extract information on the screening lengths of
the charge carriers involved in conduction in the Si:P δ layers.
The following analysis allows us to assess the validity of the
assumption that the embedded Si:P systems studied here are
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FIG. 1. (a)–(d) Change in conductivity due to quantum interference effects attributed to weak localization as a function of applied magnetic
field. Measurements were taken at 2 K with the magnetic field applied normal to the sample plane, B⊥, and with the magnetic field applied
parallel to the sample plane, B||. Fits to Eqs. (2) and (3) are shown as red lines for all plots. (e)–(h) Conductivity contributions from weak
localization as a function of B⊥ at various temperatures. (i)–(l) Log-log plot of the temperature dependence of the phase coherence length.
From left to right: saturation dose PH3 sample with no locking layer, B (a), (e), (i); saturation dose PH3 sample with a locking layer, A1
(b), (f) , (j); medium dose PH3 sample with a locking layer, A2 (c), (g), (k); low-dose PH3 sample with a locking layer, A3 (d), (h), (l).

highly disordered, highly confined 2D conducting systems.
We consider a 2D magnetoconductivity tensor that includes
a temperature-independent classical Drude conductivity term,

σD = n e μ

1 + μ2 B2

(
1 −μ B

μ B 1

)
, (4)

and a 2D tensor representing the contribution to the magneto-
conductivity from EEI,

δσee =
(

δσee 0

0 δσee

)
, (5)

where EEIs in the diffusion channel do not contribute to the
Hall conductivity, δσee,xy = 0. This gives the total magneto-
conductivity as σ = σD + δσee.

At cryogenic temperatures in semiconductors, according
to the Bloch-Grüneisen formula [47] electron-electron effects
are predicted to have a larger temperature dependence than
phonon scattering and other scattering effects. We therefore
approximate the classical Drude magnetoconductivity tensor
as that which would be measured at absolute zero temper-
ature, with corresponding on-diagonal tensor term and Hall
coefficient at absolute zero given by σ 0

D and R0
H , respectively.

We estimate the value of σ 0
D, defined as σ 0

D = neμ, as the
zero-field conductivity measured at the lowest temperature
reached in this study, about 2 K, with the contribution from
weak localization, described earlier in this paper, subtracted

out. We likewise estimate the value of R0
H as the Hall co-

efficient measured at the lowest temperature of about 2 K.
Altshuler and Aronov [24] demonstrated that EEI contribute
to an adjustment to the Hall coefficient, δRH , given by

δRH

R0
H

= −2
δσee

σ 0
D

. (6)

The contribution to conductivity due to EEI can also
be approximated from a measurement of σxx(B) at a suffi-
ciently strong magnetic field to suppress weak localization,
B � h̄

4eDτφ
. In this case δσee(T ) ≈ σxx(B � h̄/4eDτφ, T ) −

σxx(B � h̄/4eDτφ, T = 0). Here, the subtracted second term
is measured at the lowest temperature reached in this study
of about 2 K. δσee calculated this way is expected to agree
with δσee calculated from Eq. (6) within a factor of 2 [48]
and is a useful check. However, larger than factor-of-2 de-
viations may arise if there are other temperature-dependent
scattering and magnetoconductivity effects. δσee calculated
by using magnetoconductivities measured at B = 12 T agrees
with values calculated using Eq. (6) within a factor of close
to 1 for samples A1, A2, and B. However, we observe slightly
higher deviations between δσee values calculated by these two
methods for the sample near the metal-insulator transition,
sample A3, approaching a factor of 5 difference at 20 K.

We are more confident in the determination of δσee from
the Hall measurements relative to values extracted from mea-
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surements of the high-field magnetoconductivity. The mea-
surement of δσee from σxx(B) at high fields is based upon
the presumption that only contributions from EEI remain
when the magnetic field is raised high enough to suppress
weak localization. In practice, it requires identifying an ap-
propriate magnetic field, B � h̄/4eDτφ , and accounting for
the temperature dependence of additional interactions such
as the temperature- and magnetic-field-dependent δσee(B, T )
contribution from spin splitting in the particle-hole diffusion
channel and temperature-dependent coupling in the particle-
particle diffusion channel [44]. Choosing a sufficiently high
field at which to measure δσee is further complicated in highly
disordered systems, such as these Si:P δ layers, by a weak
localization feature that is quite wide, often contributing to
a positive magnetoconductance over more than 1 T. These
complications are illustrated in the analysis of sample A3,
which is near the metal-insulator transition. It is expected to
support temperature-dependent interaction mechanisms that
impact the magnetoconductivity in addition to WL and EEI,
leading to the disagreement in δσee extracted by the two
approaches. Determining δσee from the slope of the Hall
curve according to Eq. (6), on the other hand, permits the
measurement of the ln(T)-dependent δσee term directly [49],
and has been confirmed experimentally [48,50]. Furthermore,
determining the electron-electron contribution to the conduc-
tivity from Hall measurements leads to a smaller uncertainty
of the measurement, even when including the fitting error.
Consequently, we use the values of δσee calculated from
Eq. (6) in the remainder of our analysis of EEI in these
samples.

In this system, a highly disordered conducting system
at low temperature in the diffusive charge transport regime
where kT τ

h̄ � 1, we expect δσee, and therefore δRH , to have a
logarithmic temperature dependence [51] given by

δσee(T ) = g
e2

2π2h̄
ln

(
kT τ

h̄

)
(7a)

= g
e2

2π2h̄
ln (T ) + g

e2

2π2h̄
ln

(
kτ

h̄

)
, (7b)

where the factor g depends on the Fermi wavelength and the
screening length, and the term on the right in Eq. (7b) is a con-
stant. We measure the contribution to the conductivity from
EEI, δσee, at various temperatures by extracting its value from
the Hall coefficient measured at these temperatures. Inverting
the conductivity tensor, σ, for δσee � neμ and μB � 1, we
get an approximate resistivity tensor, ρ, of

ρ ≈ 1

n e μ

(
1 −μ B

μ B 1

)

− �σee

(n eμ )2

(
1 − μ2 B2 −2 μ B

2 μ B 1 − μ2 B2

)
, (8)

from which we obtain a value for the transverse resistivity,
ρxy, that corresponds with Eq. (3):

ρxy = − 1

n e

(
1 − 2 δσee

n e μ

)
B = R0

H

(
1 − 2

δσee

σ 0
D

)
B. (9)

From this, the Hall resistivity at each temperature is given
as RH (T ) = R0

H [1 − 2 δσee(T )
σ 0

D
], from which δσee(T ) can be

FIG. 2. The contribution to the conductivity from electron-
electron interactions as a function of the natural log of the tem-
perature. The linear fit to the data gives an approximate value for
the factor g in Eqs. (7a) and (7b). Error bars show the total error
calculated from statistical and fitting errors.

extracted. δσee is plotted as a function of ln(T) and fitted
to Eq. (7b) (Fig. 2), the linear slope of which provides the
parameter g. Note that for sample B, there appears to be a
kink in the curve at about 8 K. An explanation for this is
beyond the scope of this study. However, it appears that this
poorly confined δ-layer sample does not behave according to
the predictive models for highly disordered 2D diffusively
conducting systems at low temperature. In spite of this, we
use the portion of the data that is linear with ln(T) at the lower
temperatures, where the system is more ideally in the highly
disordered, diffusive transport regime of kT τ

h̄ � 1, for our fit
to obtain g for this sample.

For the diffusive correction to the conductivity due to EEI
in a highly disordered 2D system at low temperature, g =
1 + 3

4λ
( j=1)
σ , where λ

( j=1)
σ is a dimensionless electron-electron

exchange correction for two interacting spin- 1
2 electrons [24].

λ
( j=1)
σ can be expressed in terms of a Hartree term, F, as

λ( j=1)
σ = 4

[
1 − 2

(
1 + 1

2 F
)

ln
(
1 + 1

2 F
)

F

]
. (10)

In the purely 2D case, the Hartree term is given by

F = 1

π (x2 − 1)1/2 ln

[
x + (x2 − 1)1/2

x − (x2 − 1)1/2

]
, x = 2kF

κT F
, (11)

where kF is the Fermi wave number shown in Table I. Note
that in our analysis, we excluded the higher-order terms to the
correction to conductivity calculated by Zala et al. [52], which
extend the corrections to conductivity due to EEI beyond the
low-temperature diffusive regime. However, these terms may
prove useful in future studies on these systems.

Solving Eq. (11) gives the Thomas-Fermi wave vector,
κT F , the inverse of which is the Thomas-Fermi screening
length, lTF. The Thomas-Fermi screening length is computed
for all four samples and plotted versus the 3D carrier con-
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FIG. 3. Thomas-Fermi screening length, lTF as a function of
3D carrier concentration for the three locking layer samples A1,
A2, and A3 (LL) and no locking layer sample B (noLL). The lTF

values computed from theory [Eq. (12)] are shown as a red dashed
line. Error bars show two standard deviations from the total error
calculated from statistical and fitting errors.

centration values calculated in the previous section of this
manuscript in Fig. 3. The measured lTF values for the samples
grown with a locking layer (samples A1–A3) show good
agreement—within two standard deviations—with the calcu-
lated Thomas-Fermi screening length, which is given by

lTF =
[

m∗ e2

π ε h̄2

(
3 n3D

π

)1/3
]−1/2

, (12)

and is included in Fig. 3 as a dashed red line. The measured
lTF value in the sample with no locking layer (B) shows a
larger discrepancy of greater than two standard deviations
from the calculated lTF value. This is an unsurprising result
for this sample, with its poorly confined Si:P system and ap-
proximately T −3/4 temperature dependence of lφ , in which we
predict EEI behavior expected for a 3D disordered conductor,
not a 2D disordered conductor for which the Aronov and

Altschuler theoretical framework is appropriate. Moreover, an
a priori presumed effect of dopant confinement on screening
lengths would be that suppression of screening lengths would
be more likely to be observed for dimensionally confined
systems, such as those in the locking layer samples, than for
the poorly confined no locking layer system. The reason for
this is that out-of-plane electric fields are not contributing
to any consequential screening when the conducting charges
are confined to two dimensions. That we instead measure
the greatest suppression of screening length relative to the
expected value for Sample B further indicates that, for the pur-
poses of our EEI analysis, the assumption of tight confinement
of the dopants and a 2D nature of the conducting system are
not valid in this sample.

IV. CONCLUSION

In summary, we used a self-contained magnetotransport
investigation to study low-temperature charge carrier transport
physics and quantify screening lengths for embedded Si:P δ

layers. We show that, for systems well confined by a lock-
ing layer, these systems behave according to Altschuler and
Aronov’s framework for disordered 2D conducting systems.
From our calculations, we derive charge screening lengths
for the locking layer systems that well match those predicted
from the Thomas-Fermi theory. The no locking layer Si:P
system, with poorly confined dopants, does not appear to
behave according to this model for 2D systems, and instead
expresses a temperature dependence of the phase coherence
related to electron-electron interaction physics expected in
3D disordered conducting systems. As part of the suite of
measurements and analysis that lead to this result, analysis
of the weak localization signal, described in detail in this
paper, demonstrates its promise as an accurate method of
measuring the δ-layer thickness. Overall, this work shows that
it is appropriate to treat embedded Si:P δ layers confined by
a locking layer as 2D disordered metallic systems with 2D
EEIs for the purpose of designing and modeling embedded P
dopant-based Si quantum computing devices.
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